Five key facts about Parylene when protecting printed circuit board assemblies

  1. The Parylene conformal coating process is a very specialised vapour deposition application method using specialist vacuum chamber systems. This differs significantly to all of the other liquid conformal coatings available on the market that are applied by spraying, brushing and dipping.
  2. Parylene coating is completely conformal and uniform to the surface of the Printed Circuit Board (PCB) or product. It is also pinhole free. Therefore, components with sharp edges, points, flat surfaces, crevices or exposed internal surfaces are coated uniformly without voids.
  3. Parylene coating provides an excellent moisture and gas barrier due its very low permeability. This means that electronics circuit boards coated in Parylene generally are more “waterproof” than the same electronics coated in a liquid conformal coating.
  4. Parylene is unaffected by solvents (it has very high chemical resistance) and is very effective against salt attack.
  5. Parylene has excellent electrical properties. This includes having low dielectric constant and loss with good high-frequency properties, good dielectric strength, and high bulk and surface resistance.

Want to find out more about Parylene?

Contact us to discuss your needs and let us explain how we can help you.

Or, read more on Parylene equipment and our Parylene subcontract services now.

Contact us now.

Five key facts about using fluoropolymer Nano-coatings for protecting printed circuit boards

June15-3

  1. A Nano-coating is hydrophobic. It repels water from the surface of the circuit board and water will not wet the circuit.
  2. The Nano-coatings are extremely thin (<2um). They are very different to traditional conformal coatings.

Click here to read more about the Five key facts about using fluoropolymer Nano-coatings for protecting printed circuit boards

Find out how we can help you with your Nano-coatings now.

Contact us to discuss your needs and let us explain how we can optimize your process for you.

Contact us now.

Three key reasons to use a Molecular Vapor Deposition (MVD) process to protect a circuit board instead of conformal coatings

MVD

Molecular Vapour Deposition (MVD) is a new process introduced to the electronics coating market.

MVD is a hybrid coating technique using ALD (Atomic Layer Deposition) and CVD (Chemical Vapor Deposition) coating processes in combination.

The method uses multiple layers of ultra-thin coatings with differing properties to build a completely protective coating with a final hydrophobic Nano coating as a top layer.

Click here to read more about the Three key reasons to use a Molecular Vapor Deposition (MVD) process to protect a circuit board instead of conformal coatings

Find out how we can help you with your Molecular Vapor Deposition (MVD) now.

Contact us to discuss your needs and let us explain how we can optimize your process for you.

Contact us now.

 

Nexus article on, “Outsourcing your conformal coating project – The key points”

Nexus

Nexus, the independent conformal coating resource, recently published an article on subcontracting your conformal coating services out to a third party.

I thought it would be useful to signpost people to this article and republish the points they raised since getting it right can be so critical in outsourcing.

Nexus identified that there are, “three key points to consider when choosing a subcontractor”.

Click here to read more about Nexus’ article on, “Outsourcing your conformal coating project – The key points”

Find out how we can help you with your conformal coating process now.

Contact us to discuss your needs and let us explain how we can optimize your process for you.

Contact us now.

What is a fluoropolymer nano coating and how can it protect my circuit board?

A fluoropolymer Nano-coating is an ultra-thin film comprised of fluorocarbons and characterised by carbon-fluorine bonds.

Chemically inert, fluorocarbons are not susceptible to Van der Waals force. This means that films formed using these materials are non-stick (hydrophobic and water repellent) and friction reducing.

Also, due to the fluorine bonds, these Nano-coatings demonstrate a high level of chemical resistance to acids, bases and most solvents.

This makes them interesting materials for protecting electronic circuits. 

Click here to read more about Fluoropolymer nano-coatings.

Find out how we can help you with your conformal coating process now.

Contact us to discuss your needs and let us explain how we can optimize your process for you.

Contact us now.

Do you need UL qualification for your conformal coating?

UL are the Underwriters Laboratories and are a global safety certification body for consumer electronics.

They are a 3rd Party test service. There is no self-certification available.

A qualification to UL can be used as a sign of quality control and testing independently of the coatings protective ability.

When do you need UL?

Sometimes it may be required that the conformal coating needs UL approval to be applied to a circuit board. It will depend on the market the electronics goes into.

UL approved coatings can be used on electronics in many diverse sectors such as the domestic home, industrial controls, telecommunications and aerospace.

In fact, in nearly all areas conformal coatings tend to be used for protection.

UL approved coatings can be requested in nearly all areas conformal coatings tend to be used for protection for electronics including domestic home, industrial controls, telecommunications and aerospace.

Click here to read more about UL qualification for your conformal coating

Find out how we can help you with your conformal coating process now.

Contact us to discuss your needs and let us explain how we can optimise your process for you.

Contact us now.

How do I selective apply my conformal coating?

Selective application of conformal coating is this case is applying the conformal coating without using masking to shield components from ingress.

Technically using masking tapes, latex and boots is a selective process. But, we want to look at coating application without masking.

This leaves a couple of different options.

The first is brushing. This is a simple selective process that can be highly effective.

The second, and the more obvious option, is selective robot.

This process uses a small spray valve (there are many conformal coating spray valve types) that is attached to a robot that follows a set pattern applying the conformal coating selectively to the circuit board.

To read more about how to selective apply conformal coating, click here…

Find out how we can help you with your conformal coating process now.

Contact us to discuss your needs and let us explain how we can optimize your process for you.

Contact us now.